Polymeric ionic liquids for CO2 capture and separation: potential, progress and challenges
نویسندگان
چکیده
The increasing level of carbon dioxide (CO2) in the atmosphere is a big threat to the environment and plays a key role towards global warming and climate change. In this context to combat such issues, polymeric ionic liquids (PILs) serve as potential substitutes that offer an extremely versatile and tunable platform to fabricate a wide variety of sorbents for CO2 capture, in particular, for flue gas separation (CO2/N2) and natural gas purification (CO2/CH4). Formerly, there have been several reports on exploitation of ionic liquids for CO2 sorption with promising results. However, just a few have focused on polymeric ionic liquids which significantly over-performed the sorption efficiency of the molecular ionic liquids. This review is first ever of its kind which showcases the potential of PILs as a new member of the CO2 adsorbent family. The most dynamic aspect of PILs research at present is the curiosity to explore their potential as solid sorbents for CO2 capture and separation. This review not only highlights the recent advances in the area of PILs as sorbents for CO2 uptake but also portrays the forthcoming challenges in improving their efficiency. The effect of various cations, anions, polymer backbones, alkyl substituents, porosity, cross-linking, molecular weight and moisture on the CO2 sorption capacity and separating efficiency is scrutinized in detail. Moreover, future strategies to increase the CO2 capture performance of PILs are also discussed.
منابع مشابه
Functionalized Polymeric Membranes for CO2 Capture
Reducing CO2 emission and lowering the concentration of greenhouse gases in the atmosphere has quickly become one of the most urgent environmental issues. While a variety of technologies and methods have been developed, the separation of CO2 from gas streams is still a critical issue. Apart from establishing new techniques, the exploration of membrane materials with high separation performance ...
متن کاملNovel inorganic membranes for gas separation
A literature survey was performed to evaluate the state-of-the-art membrane systems for CO2/CH4 separation which is critical in the natural gas industry. The systems that were reviewed included zeolite, carbon, polymeric, mixed matrix, amorphous silica, and supported ionic liquid membranes. Supported ionic liquid CO2/CH4 selective membranes were synthesized in our laboratory by applying room te...
متن کاملCO2 Separation using Polymeric Ionic Liquids Membranes: the effect of mixing different Cyano Anions
متن کامل
Evaluating the Interactions of Co2-Ionic Liquid Systems through Molecular Modeling
Owing to the stringent environmental legislations, CO2 capture and sequestration is one of the viable solutions to reduce the CO2 emissions from various sources. In this context, Ionic liquids (ILs) are being investigated as suitable absorption media for CO2 capture. Due to their non-evaporative, non-toxic, and non-corrosive nature, these ILs have the potential to replace the existing solvents ...
متن کاملCellulose-Supported Ionic Liquids for Low-Cost Pressure Swing CO2 Capture
Reducing the cost of capturing CO2 from point source emitters is a major challenge facing carbon capture, utilization, and storage. While solid ionic liquids (SoILs) have been shown to allow selective and rapid CO2 capture by pressure swing separation of flue gases, expectations of their high cost hinders their potential application. Cellulose is found to be a reliable, cheap, and sustainable s...
متن کامل